STUDIES ON THE MACROLIDE ANTIBIOTIC YL-704 COMPLEX. II

ISOLATION AND PHYSICOCHEMICAL PROPERTIES OF YL-704 COMPONENTS

Akio Kinumaki, Isao Takamori, Yoichi Sugawara, Noboru Nagahama, Makoto Suzuki, Yoshiyuki Egawa, Masaharu Sakurazawa and

Tomoharu Okuda

Microbial Chemistry Research Laboratory, Tanabe Seiyaku Co., Ltd., Toda, Saitama, Japan (Received for publication July 18, 1973)

New family of the basic macrolide antibiotics, numbered YL-704, was isolated from the culture broth of *Streptomyces platensis* subsp. *malvinus* MCRL 0388. YL-704 family was constituted of at least thirteen components which were classified into the three types according to their UV absorption pattern; first type (YL-704 W_1 and W_2) with the absorption maximum at 280 nm as carbomycin B, second type (YL-704 A_1 , A_0 , A_2 , A_3 , B_1 , B_2 , B_3 and C_2) with the maiximum at 232 nm as leucomycins, and third type (YL-704 C_1 , C_3 and C_4) with no characteristic UV absorption.

In the course of our screening of new antibiotics, a new family of the basic macrolide antibiotic was isolated from the culture broth of *Streptomyces platensis* subsp. *malvinus* MCRL 0388, which is chemotherapeutically active primarily against Gram-positive bacteria. In this paper, the isolation and the physicochemical properties are reported. The taxonomy of the producing strain and the structural elucidation of YL-704 components are reported in detail in the separate papers.^{0,10,11}

Isolation

As shown in Chart 1, the fermented broth was first adjusted to pH 4.0 and filtered with Celite. The filtrate was extracted twice with ethylacetate at pH 8.0. After concentrating the extract, antibiotics in the ethylacetate layer were transferred into dilute hydrochloric acid of pH 2.0. The acidic aqueous solution was adjusted to pH 8.0 and extracted twice with benzene. The benzene layer was concentrated to dryness to yield the crude powder (15.6 g), which was then dissolved in ethylacetate and rapidly passed through an alumina column for decolorization. The almost colorless powder obtained by the above procedure was then chromatographed on the silica-gel column using the solvent system of benzene-acetone (7:3). Each eluate was monitered on the thin-layer chromatoplate by spraying with $40\% H_2SO_4$ followed by heating. By the chromatography the antibiotic principles were separated into nine groups. Each group was further purified, where necessary, by the neutral alumina column chromatography to separate the active principle as a pure substance.

YL-704 W_1 and W_2 were separated on an alumina (Woelm, activity I) column with the solvent system of benzene-ethylacetate (3:1). The minor component YL-704 A_0 was not isolated from the large amounts of coexisting YL-704 A_1 by this chromatography, but an acetate com-

	Chart	Fermente filtra Filtrate (adjus extra Ethylace conc extra Water la extra extra extra extra deco silica	d broth (350 m tion with Celit 50 liters) stment of pH t ction with eth tate layer entration to 2 l totion with pH yer (4 liters) ction with ben oration to drym atibiotics (15.6 g	o 8.5 ylacetate (20 lit iters 2.0 water (2 li zene (4 liters×2 tess g) alumina in eth graphy	ers×2) ters×2) 2) at pH 80	
W_{2} W_{1} A	$ \begin{array}{c} II \\ Ac_2O-Pyr. \\ silicagel \\ chromato. \\ \hline Ac A_1-Ac \end{array} $	$\begin{array}{c c} III & IV \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		VI VI mina chromato $B_1 B_2 B_1 C$	graphy)	
Yiel Con	nponent ld (g)	$\begin{array}{cccc} W_2 & W_1 \\ 0.075 & 0.095 \\ B_1 & B_2 \\ 3.55 & 0.3 \end{array}$	$A_{0} - Ac$ 0.025 B_{3} 0.8 cal properties of	$\begin{array}{ccc} A_{1} Ac & A_{1} \\ 0.7 & 3.0 \\ C_{1} & C_{2} \\ 0.15 & 0.14 \\ \text{of YL-704 comp} \end{array}$	$\begin{array}{ccc} 0.2 & 0.7 \\ C_3 & C \\ 0.011 & 0.0 \end{array}$	4
Component	YL-704 A ₁	YL-704 A ₂	YL-704 A ₃	YL-704 B ₁	YL-704 B ₂	YL-704 B ₃
Crystal m.p. (°C) Formula M.W. (MS)*	colorless prism 122~123 C ₄₃ H ₇₁ NO ₁₅ 841	colorless needle 193~194 C ₄₃ H ₇₁ NO ₁₅ 841	colorless prism 121~122 C ₄₂ H ₆₉ NO ₁₅ 827	colorless prism 131~132 C ₄₁ H ₆₇ NO ₁₅ 813	$\begin{array}{c} \text{colorless} \\ \text{needle} \\ 185 \sim 186 \\ \text{C}_{41}\text{H}_{67}\text{NO}_{15} \\ 813 \end{array}$	colorless prism 136~137 C ₄₀ H ₆₅ NO ₁₅ 799
(VP, CHCl ₃)* Analysis (%) C H N	834, 865 Found Calcd. 61.26 61.36 8.38 8.44 1.88 1.66	822, 854 Found Calcd. 60.93 61.36 8.36 8.44 1.93 1.66	Found Calcd. 60.81 60.99 8.55 8.41 1.79 1.70	805, 835 Found Calcd. 60.89 60.52 8.35 8.24 1.71 1.72	796, 840 Found Calcd. 59.99 60.52 8.15 8.24 1.68 1.72	Found Calcd. 60.20 60.13 8.15 8.20 1.82 1.75
UV λ_{\max}^{EtOH} nm log ε	232.5 4.45	235 4.22	232 4.45	232.5 4.36	235 4.36	232 4.40
IR ν _{max} ^{nnjol} cm-1	3450 2780 2720 1742 1736 1655 1620 1310 1180 1156 1114 1080 1055 1020 920 845	3485 2780 2725 1740 1735 1720 1655 1630 1321 1182 1161 1100 1082 1050 1032 1005 980	3470 2740 1740 1725 1660 1618 1300 1240 1175 1130 1095 1060 1025 1005 922 845	3450 2780 2725 1745 1738 1670 1640 1312 1290 1180 1160 1118 1080 1050 1020 916 845	3460 2800 2730 1740 1732 1720 1660 1630 1322 1180 1160 1120 1180 1050 1028 1000 918 918	3460 2720 1738 1720 1660 1635 1305 1238 1168 1122 1090 1055 1020 912 840 840
$[\alpha]_{\rm D}^{22}(c \ 1, \ {\rm CHCl}_3)$	-50.2°	-49.0°	-54.0°	-42.1°	-42.0°	-55.0°

* MS=Mass spectrometry, VP=Vapor pressure osmometry

6.80

6.85

6.90

pKa'(50% EtOH)

6.90

6.80

7.00

plex of YL-704 A_0 and A_1 could be separated on silica-gel column chromatography developed with benzene-acetone (5:1) to each acetate. Therefore, the acetate of YL-704 A_0 provided the physicochemical and biological properties.

YL-704 A_1 , A_2 and A_3 were successfully isolated on alumina (Woelm, activity I) column by eluting with benzene-ethylacetate (5:2). By chromatography on an alumina (Woelm, activity III) column with benzene: acetone (3:1), YL-704 B_1 , B_2 , B_3 , C_1 , C_2 , C_3 and C_4 were isolated effectively from each other. The purification procedure was illustrated in Chart 1.

Each component obtained as above was recrystallized from benzene - n-hexane as a colorless crystal. The physicochemical properties of every antibiotic components are summarized in Tables 1 and 2.

All components were soluble in methanol, ethanol, propanol, butanol, methylacetate, ethylacetate, chloroform, acetone, diethylether and benzene, sparingly soluble in water, and practically insoluble in *n*-hexane, cylcohexane and petroleum ether. Exceptionally, YL-704 A_2 and B_2 were less soluble in benzene than the other factors.

All antibiotics gave negative erythromycin and carbomycin tests, and negative FEHLING, ferric chloride and ninhydrin tests.¹²⁾ On thin-layer chromatography, the antibiotics were visualized as dark violet or purple-colored spots by spraying 40% H₂SO₄ followed by heating,

Component	YL-70	04 W ₂	YL-7(04 W ₁	YL-7	04 C ₁	YL-7	04 C ₂	YL-7	04 C ₃	YL-7	04 C ₄	YL-70 diace	$4 A_0$ state
Crystal		rless ate		rless late		rless	colo small	rless prism		edle		erless edle	color need	
m.p.(°C)	10	1-3	159	-161	12	5-7	11	6-8	126-7		130-2		114-5	
Formula	$C_{44}H_{1}$	1NO15	$C_{43}H_6$	$_{9}NO_{15}$	$C_{41}H_{0}$	7NO16	$C_{40}H_{e}$	35NO15	C ₄₃ H	NO ₁₆	$C_{42}H_{42}$	39NO16	C48H77	NO ₁₇
M.W.(MS)*	853		839		829		799		857		843		939	
Analysis (%)	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.
С	61.19	61.95	61.71	61.50	59.45	59.35	60.21	60.08	60.95	60.62	60.17	60.21	61.15	61.39
Н	8.25	8.39	8.13	8.22	8.03	8.08	8.20	8.14	8.29	8.38	8.31	8.28	8.21	8.26
Ν	1.64	1.63	1.70	1.67	1.75	1.69	1.68	1.75	1.72	1.61	1.65	1.63	1.50	1.49
UV λ_{max}^{EtOH} nm	280		280		er	nd	232.5	;	end		end		232	
$\log \varepsilon$	4.37		4.37				4.43						4.47	
IR unax cm ⁻¹	3520	2730	3550	3410	3460	2730	3560	2740	3400	2730	3380	2720	3510	2715
	1740	1680	2750	1748	1740	1660	1740	1725	1720	1660	1742	1720	1735	1660
	1633	1595	1737	1690	1300	1280	1600	1308	1298	1248	1658	1298	1630	1240
	1300	1255	1640	1603	1198	1173	1247	1180	1187	1163	1237	1184	1165	1120
	1200	1175	1300	1200	1090	1065	1135	1094	1132	1083	1163	1132	1055	1030
	1130	1090	1180	1130	1040	980	1060	1025	1052	1033	1083	1050	1000	960
	1060	1025	1090	1065	913	865	927	850	962	918	1034	960	920	
	925	870	1040	1003	842		730		860		915	858		
	845		990	927										
			875											
$[\alpha]_{\mathrm{D}}^{22}(c \ 1, \ \mathrm{CHCl}_3)$			_	32°		69°	-	42°						
pKa'(50% EtOH)			6.	95	7.	00	7.	01						

Table 2. Physicochemical properties of YL-704 components

* M3=Mass spectrometry

Component	Rf^{a}	Rf^{b}	Rf ^{c)}
W_2	0.56	0.92	0.72
W_1	0.37	0.88	0.68
\mathbf{A}_{0}	0.22	0.75	0.51
\mathbf{A}_1	0.20	0.72	0.50
\mathbf{A}_2		0.60	0.48
\mathbf{A}_3		0.53	0.43
\mathbf{B}_{1}		0.58	0.36
B_2		0.45	0.34
\mathbf{B}_3		0.38	0.33
C_1		0.30	0.29
C_2		0.43	0.30
\mathbf{C}_{3}		0.41	0.39
C_4		0.29	0.35

Table 3. Rf values of YL-704 components on thin-layer chromatography

a): Alumina-Kieselguhr. Solvents: benzeneacetone (4:1)b): Alumina-Kieselguhr. Solvents: benzene-

acetone (7:3)

c): Silica gel. Solvents: benzene-acetone (2:1)

and their Rf values were shown in Table 3. The antibiotic activities of YL-704 components were given in Table 4 as the minimum inhibitory concentrations against major bacteria by the agar dilution method.

Discussion

The above physicochemical and biological properties of the antibiotics YL-704 suggested the similarity to the 16-membered basic macrolides such as leucomycins,¹⁾ spiramycins,²⁾ and carbomycins.^{8,4)}

YL-704 W_1^{50} and W_2 exhibited the strong UV maximum at 280 nm of α , β , γ , δ -unsaturated ketone system as carbomycin B, but were less polar than carbomycin B. In the group showing the UV maximum at 232 nm, YL-704 A_1 and $B_1^{(6)}$ were major products, and YL-704 A_0 , A_3 , B_3 and C_2 were minor ones, and those suggested the presence of α , β , γ , δ -

Table 4. MIC (mcg/ml) of YL-704 components by agar dilution method Medium: Heart infusion agar

Test organisms	W_2	W_1	A ₀ acetate	\mathbf{A}_1	\mathbf{A}_2	A_3	B ₁
Staphylococcus aureus FDA 209P	0.78	0.195	0.78	0.195	0.195	0.39	0.78
S. aureus Terashima	1.56	0.39	3.12	0.195	0.195	0.39	0.19
S. aureus Smith	0.78	0.78	6.25	0.39	0.39	0.78	1.56
S. aureus B-20	>100	>100	>100	>100	>100	>100	>100
Bacillus subtilis	0.78	0.195	0.78	0.195	0.195	0.39	0.39
Escherichia coli NIHJ	>100	>100	>100	>100	>100	>100	>100
Klebsiella pneumoniae	25	25	100	50	50	100	100
Pseudomonas aeruginosa A_3	100	50	50	100	100	100	100
Proteus vulgaris	>100	>100	>100	>100	>100	>100	>100

Test organisms	\mathbf{B}_2	\mathbf{B}_3	C_1	C_2	C ₃	C_4
S. aureus FDA 209P	0.195	0.78	0.39	0.78	0.39	0.39
S. aureus Terashima	0.195	0.39	0.39	0.78	0.39	0.39
S. aureus Smith	0.78	1.56	0.78	1.56	0.78	0.78
S. aureus B-20	>100	>100	>100	>100	>100	>100
B. subtilis	0.195	0.78	0.39	0.78	0.195	0.19
E. coli NIHJ	>100	>100	>100	>100	>100	>100
K. pneumoniae	50	50	25	50	12.5	12.5
P. aeruginosa A_3	100	100	100	100	100	100
P. vulgaris	>100	>100	>100	>100	>100	>100

THE JOURNAL OF ANTIBIOTICS

unsaturated alcohol system as in leucomycins and spiramycins. YL-704 A_2 and B_2 showed the UV maximum at 235 nm suggesting the existence of the similar α , β , γ , δ -unsaturated alcohol chromophore. On the TLC, Rf values of YL-704 A_0 , A_1 and A_2 were higher than leucomycin A_3 .¹⁰ Rf values of YL-704 A_3 and B_3 were close to leucomycin A_3 and A_6 , respectively. Rf values of YL-704 B_1 , B_2 and $C_2^{(5)}$ were not identical with those of any components of leucomycins. The each component of YL-704 was readily distinguished from spiramycins by their lipophylic behavior and nitrogen contents. YL-704 $C_1^{(5)}$, C_3 and C_4 indicating the end UV absorption were not identical with any known 16-membered basic macrolide antibiotics.⁷⁾

The yields of the minor components YL-704 A_2 and B_2 were varied in every production. The physicochemical properties and the structure elucidation suggested that YL-704 A_2 and B_2 were the allylic hydroxyl-rearranged compound of YL-704 A_1 and B_1 , as in the case of isoleucomycin obtained from leucomycin.⁸⁾ Therefore we have assumed them to be artifacts.

The structures of these antibiotics have been elucidated as briefly reported.^{5,6,9,10)}

Acknowledgement

We wish to express our thanks to Dr. KEISHI KOTERA and his collaborators of Analytical Center of this company for the instrumental and elemental analyses.

References

- a) WATANABE, T.; H. NISHIDA, J. ABE & K. SATAKE: Studies on leucomycin. III. Isolation and properties of six antibacterial components in leucomycin complex. Bull. Chem. Soc. Japan 33: 1104~1108, 1960
 - b) HATA, T.; S. OMURA, A. MATSUMAE, M. KATAGIRI & Y. SANO: Leucomycin A_3 , a new antibiotic from *Streptomyces kitasatoensis*. Antimicr. Agents & Chemoth. -1966: 631~636, 1967
 - c) OMURA, S.; M. KATAGIRI & T. HATA: The chemistry of leucomycins. IV. Structure of leucomycin A_1 . J. Antibiotics 21: 199~203, 1968
 - d) OMURA, S.; M. KATAGIRI & T. HATA: The structures of leucomycin A₄, A₅, A₆, A₇, A₈ and A₉. J. Antibiotics, Ser. A 20: 234 \sim 235, 1967
- PAUL, R. & S. TCHELITCHEFF: Structure de la spiramycine. I. Etude des produits de dégradation, charactérisation du mycarose. Bull. Soc. Chim. France 1957: 443~447, 1957
- 3) a) WOODWARD, R.B.: Struktur und Biogenese der Macrolide, eine neue Klasse von Naturstoffen. Angew. Chem. 69: 50~58, 1957
 b) WOODWARD, R.B.; L.S. WEILER & P.C. DUTTA: The structure of magnamycin. J. Am Chem. Soc. 87: 4662~4663, 1965
- HOCHSTEIN, F.A. & K. MURAI: Magnamycin B, a second antibiotic from Streptomyces halstedii. J. Am. Chem. Soc. 76: 5080~5083, 1954
- 5) SUZUKI, M.; I. TAKAMORI, A. KINUMAKI, Y. SUGAWARA & T. OKUDA: The structures of antibiotics YL-704 C₁, C₂ and W₁. J. Antibiotics 24: 904~906, 1971
- 6) SUZUKI, M.; I. TAKAMORI, A KINUMAKI, Y. SUGAWARA & T. OKUDA: The structures of antibiotics YL-704 A and B. Tetrahedron Letters 1971: 435~438, 1971
- (The name of YL-704 A and B has been translated to YL-704 A_1 and B_1 , respectively.)
- 7) UMEZAWA, H: Index of antibiotics from actinomycetes. University of Tokyo Press. 1967
- OMURA, S.; M. KATAGIRI, H. OGURA & T. HATA: The chemistry of leucomycins. III. Structure and stereochemistry of leucomycin A₃. Chem. Pharm. Bull. 16: 1181~1186, 1968
- 9) KINUMAKI, A.; I. TAKAMORI, Y. SUGAWARA, Y. SEKI, M. SUZUKI & T. OKUDA: Studies on the macrolide antibiotic YL-704 complex. IV. The structures of minor components. J. Antibiotics 27: 117~122, 1974
- 10) KINUMAKI, A.; I. TAKAMORI, Y. SUGAWARA, M. SUZUKI & T. OKUDA: Studies on the macrolide antibiotic YL-704 complex. III. The structures of new macrolide antibiotics YL-704 A₁ and B₁. J. Antibiotics 27: 107~116, 1974
- FURUMAI, T.; Y. SHIMIZU, K. TAKEDA, N. MATSUZAWA, K. TANI & T. OKUDA: Studies on the macrolide antibiotic YL-704 complex. I. Taxonomy of the producing strain and production of the complex. J. Antibiotics 27: 95~101, 1974
- FISHBACH, H. & J. LEVINE: The identification of antibiotics. Antibiot. & Chemoth. 3: 1159~1169, 1953